GNSS-MR soil moisture retrieval considering the multipath environments differences and gross error

نویسندگان

چکیده

针对基于单系统单卫星GNSS-MR(GNSS Multipath Reflectometryï¼‰åœŸå£¤æ¹¿åº¦åæ¼”çš„å¯é æ€§ä¸é«˜ã€å®žé™ å¯æ“ä½œæ€§ä¸å¼ºå’Œæœ€å°äºŒä¹˜ä¼°è®¡ä¸å ·é²æ£’æ€§çš„ç¼ºç‚¹ï¼Œä¸ºèŽ·å–æ›´ä¼˜çš„å»¶è¿Ÿç›¸ä½ä¼°å€¼ï¼Œå¹¶æ”¹å–„GNSS-MRåœŸå£¤æ¹¿åº¦åæ¼”çš„å¯é æ€§å’Œå®žé™ å¯æ“ä½œæ€§ï¼ŒåŒæ—¶ç®€åŒ–ç¹æ‚çš„é€‰æ˜Ÿè¿‡ç¨‹ï¼Œæå‡ºäº†ä¸€ç§åŸºäºŽæŠ—å·®ä¼°è®¡çš„å¤šç³»ç»Ÿå¤šå«æ˜Ÿç»„åˆGNSS-MRåœŸå£¤æ¹¿åº¦åæ¼”ç®—æ³•ã€‚è¯¥ç®—æ³•é¦–å ˆé¡¾åŠå¤šå¾„çŽ¯å¢ƒçš„å·®å¼‚æ€§ã€å¤šå¾„è¯¯å·®çš„å‘¨æœŸç‰¹æ€§ç­‰è¿›è¡Œä¿¡å™ªæ¯”SNR(Signal to Noise Ratio)观测值的筛选,然后采用基于IGGIII(Weight Function III Developed by Institute of Geodesy and Geophysics)权函数的抗差估计解求延迟相位,进而获得表征土壤湿度变化趋势的延迟相位组合。实验结果表明,相较于未采用抗差估计的多系统多卫星组合(方案1)和单卫星组合(方案3),得益于抗差估计良好的鲁棒性,基于抗差估计的多系统多卫星组合(方案2)和单卫星组合(方案4ï¼‰èŽ·å¾—äº†è¾ƒé«˜çš„å»ºæ¨¡ç²¾åº¦ï¼Œæ‰€å¾—å»¶è¿Ÿç›¸ä½ä¸Žå®žæµ‹åœŸå£¤æ¹¿åº¦é—´çš„ç›¸å ³ç³»æ•°åˆ†åˆ«ä¸º0.97和0.95ã€åœŸå£¤æ¹¿åº¦æ‹Ÿåˆæ®‹å·®çš„å‡æ–¹æ ¹è¯¯å·®åˆ†åˆ«ä¸º0.010和0.012;同时,方案2和方案4è¿˜å–å¾—äº†è¾ƒé«˜çš„åœŸå£¤æ¹¿åº¦é¢„æŠ¥ç²¾åº¦ï¼ŒåœŸå£¤æ¹¿åº¦é¢„æµ‹å€¼ä¸ŽåœŸå£¤æ¹¿åº¦å®žæµ‹å€¼é—´çš„ç›¸å ³ç³»æ•°åˆ†åˆ«ä¸º0.92和0.91ã€åœŸå£¤æ¹¿åº¦é¢„æŠ¥æ®‹å·®çš„å‡æ–¹æ ¹è¯¯å·®åˆ†åˆ«ä¸º0.016和0.023;此外,相比于方案4,方案2åœ¨é‡‡ç”¨æŠ—å·®ä¼°è®¡è§£æ±‚å»¶è¿Ÿç›¸ä½çš„åŸºç¡€ä¸Šï¼Œé‡‡ç”¨å¤šç³»ç»Ÿå¤šå«æ˜Ÿç»„åˆè¿›ä¸€æ­¥æå‡äº†å»¶è¿Ÿç›¸ä½çš„ä¼°å€¼ç²¾åº¦ï¼Œä»Žè€Œä¸ä» é¿å äº†å¤æ‚çš„é€‰æ˜Ÿè¿‡ç¨‹ï¼Œè€Œä¸”è¿˜èŽ·å¾—äº†æ›´å¥½çš„å»ºæ¨¡æ•ˆæžœå’Œæ›´é«˜çš„åœŸå£¤æ¹¿åº¦é¢„æŠ¥ç²¾åº¦ã€‚

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GNSS Multipath Error Reduction in Harsh Environments

The performance of code delay and carrier phase estimation of a GNSS signal propagated in an urban or indoor environment is highly degraded by multipath when the conventional multipath mitigation techniques such as narrow correlator and double delta correlator are applied. These conventional techniques rely on the value of the delay corresponding to the peak of the autocorrelation function. In ...

متن کامل

3-D Atmospheric Moisture Retrieval using GNSS

Water vapour, one of the dominant greenhouse gases, is a highly variable constituent of the Earth's atmosphere with a high latent heat. These two factors give it a key role in the development of atmospheric dynamics. Knowledge of the behaviour and distribution of water vapour in the atmosphere is crucial for understanding and predicting weather and climate. Unfortunately, atmospheric water vapo...

متن کامل

Soil moisture retrieval

Soil moisture retrieval through a merging of multi-temporal L-band SAR data and hydrologic modelling F. Mattia, G. Satalino, V. R. N. Pauwels, and A. Loew Consiglio Nazionale delle Ricerche, Istituto di Studi sui Sistemi Intelligenti per l’Automazione (ISSIA), Bari, Italy Ghent University, Laboratory of Hydrology and Water Management (LHWM), Ghent, Belgium University of Munich (LMU), Department...

متن کامل

Soil Moisture & Snow Properties Determination with GNSS in Alpine Environments: Challenges, Status, and Perspectives

Moisture content in the soil and snow in the alpine environment is an important factor, not only for environmentally oriented research, but also for decision making in agriculture and hazard management. Current observation techniques quantifying soil moisture or characterizing a snow pack often require dedicated instrumentation that measures either at point scale or at very large (satellite pix...

متن کامل

A Semi-Empirical SNR Model for Soil Moisture Retrieval Using GNSS SNR Data

The Global Navigation Satellite System-Interferometry and Reflectometry (GNSS-IR) technique on soil moisture remote sensing was studied. A semi-empirical Signal-to-Noise Ratio (SNR) model was proposed as a curve-fitting model for SNR data routinely collected by a GNSS receiver. This model aims at reconstructing the direct and reflected signal from SNR data and at the same time extracting freque...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of remote sensing

سال: 2021

ISSN: ['1007-4619', '2095-9494']

DOI: https://doi.org/10.11834/jrs.20219098